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ARTICLE INFO ABSTRACT

Article history: The dissolution of solids has created spectacular geomorphologies ranging
from centimeter-scale cave scallops to the kilometer-scale “stone forests” of
China and Madagascar. Mathematically, dissolution processes are modeled by
a Stefan problem, which describes how the motion of a phase-separating inter-
face depends on local concentration gradients, coupled to a fluid flow. Simu-
lating these problems is challenging, requiring the evolution of a free interface
whose motion depends on the normal derivatives of an external field in an ever-
changing domain. Moreover, density differences created in the fluid domain
induce self-generated convecting flows that further complicate the numerical
study of dissolution processes. In this contribution, we present a numerical
method for the simulation of the Stefan problem coupled to a fluid flow. The
scheme uses the Immersed Boundary Smooth Extension method to solve the
bulk advection-diffusion and fluid equations in the complex, evolving geom-
etry, coupled to a 6-L scheme that provides stable evolution of the boundary.
We demonstrate 3"-order temporal and pointwise spatial convergence of the
scheme for the classical Stefan problem, and 2"-order temporal and pointwise
spatial convergence when coupled to flow. Examples of dissolution of solids
that result in high-Rayleigh number convection are numerically studied, and
qualitatively reproduce the complex morphologies observed in recent experi-
ments.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Mass exchange between material phases, as in melting, solidification, and dissolution, drives the evolution of the
phase separating interface. When the driving dynamics are generated by diffusion or heat transfer, such interface-
evolution problems are categorized as Stefan problems [1, 2, 3]. In the cases of solidification and melting, heat flux
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at the interface drives the boundary motion [3, 4, 5]; in the case of dissolution, molecular diffusion converts the solid
into solute [3, 6, 7, 8, 9]. The rate at which melting or dissolution occurs depends on the distribution of heat or
concentration in the fluid phase, and this distribution is typically governed by an advection-diffusion equation.

These processes cannot be fully described by the classical Stefan problem alone: diffusion of heat/solute induces
density changes in the fluid, causing buoyancy driven flows that reorganize the temperature/concentration fields [10,
11]. These rearrangements induce Rayleigh-Taylor [12] and Rayleigh-Bénard convection [13] and hence enhance the
interfacial melting/dissolving rate [5, 7, 9], further complicating the interfacial dynamics. These complex dynamics
have been shown to generate fascinating pattern formations such as the scalloping of icebergs [14], the roughening of
dissolving surfaces [7, 8, 9], and the sharpening of dissolving pinnacles [15].

A significant body of literature exists for the numerical solution of Stefan problems, including schemes based
on the level-set method [16, 17, 18, 19, 20, 21], phase field method [5, 19], and others [19, 22]. In this paper, we
seek to construct a scheme for solving the Stefan problem with convection in a high Reynolds number fluid. While
difficulties are numerous, the two primary ones stem from the fact that (1) it has been observed that these problems
typically generate flows and interfacial boundaries with fine length-scales; (2) the boundary evolution depends on
gradients of computed quantities at the boundary [7, 8, 9]. The first difficulty demands a high resolution scheme that
can accommodate a moving boundary, and thus a natural choice is to use an embedded boundary method. These
schemes embed the complex and evolving boundary in a larger, geometrically simple domain, enabling the use of
many of the fast and robust methods for solving partial differential equations (PDE) that have been developed for
regular domains. Unfortunately, most embedded boundary schemes, such as the Immersed Boundary Method [23],
fail to accurately capture the gradient of unknowns at the boundary. For the Immersed Boundary Method as applied
to the diffusion equation, for example, normal derivatives of the concentration field are inconsistent at the boundary
[24]. The use of such a method would thus yield inaccurate dynamics of the phase interface.

To construct an accurate, fast, and stable solver, we leverage the recent development of the Immersed Boundary
Smooth Extension (IBSE) method [24, 25, 26], an embedded boundary scheme that accurately captures derivative
information at the boundary. The bulk advection-diffusion equations for heat/solute transport and the Navier-Stokes
equations are solved using the IBSE method in the evolving fluid region. The interfacial boundary dynamics is solved
using the 6-L method [27, 28, 29] and the Gibbs-Thomson effect is added to stabilize its long-time evolution. The
solver is accurate (at least second-order pointwise in space), efficient and stable — allowing for high resolution of
flow and boundary features, as well as long-time simulation of complex phenomena. We validate the solver through
comparisons to analytic solutions and refinement studies, demonstrate that it reproduces classical instabilities, and
use it to analyze the formation of complex surface morphologies and fluid flows for a dissolving solid.

This paper is organized as follows. In Section 2 we define the Stefan problem for melting and dissolution, and
discuss its coupling to an external fluid. In Section 3, we describe the IBSE-Stefan solver; including a review of the
IBSE method introduced in [24, 25], as well as the 6-L method, introduced in [27, 28, 29]. In Section 4, we describe
the numerical method and discuss important details of the specific implementation. In Section 5, we compare the
numerical solution of a Stefan problem without convection to an analytic solution and show that the solver captures
the Mullins-Sekerka instability, resolving complex dynamics of the solid interface. In Section 6, we show several
examples of dissolution coupled with Navier-Stokes flows. Sweeping across a range of Reynolds and Péclet numbers,
we explore which control parameters are most predictive of pattern formation on the interface and identify that the
Rayleigh number governs the regimes of shape dynamics. In Section 7, we discuss the scope and limitations of our
numerical method, and demonstrate that our study qualitatively reproduces phenomena seen in recent experiments
[7, 8].

2. Stefan problem coupled with natural convection

2.1. Stefan problem

The classical Stefan problem models the diffusion of heat between two phases of a substance that are separated
by a phase interface I, along with the evolution of that interface. Physically, one phase corresponds to a solid domain
Qoiq as shown in Fig. 1 that solidifies from or melts into its liquid phase, depending on the direction of heat flux. In
the liquid phase €;q.iq, the heat transfer is modeled by the heat equation

or
E =V-(KVT) in Qliquid- M)
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Fig. 1: Schematic for the periodic computational domain T? = [0, 2] X [0, 27]. The solid phase is shown in gray and
the liquid phase is shown in white. (a) For the classical Stefan problem without the presence of flow, the solid domain
Qoig and liquid domain €;;,,4 are separated by the evolving interface I'(¢). (b) For the Stefan problem with flow, the
gravity g induces convection. Rigid walls Q,,,; are added to bound the liquid domain from above and below.

Here T'(x, t) is the temperature field and K is the thermal diffusivity of the liquid phase. The solid phase is typically
assumed to have infinite thermal conductivity so that

T = Tm in Qsolid, (2)

where T, is the melting point of the solid. This condition provides a boundary condition for Eq. (1): 7 = T,, on
I'c Qsolid .

When the liquid temperature is greater than 7}, the solid melts into the liquid and the boundary recedes. If the
liquid temperature is lower than 7,,, which means the liquid is in an undercooled state, solidification occurs at the
boundary and the solid grows. This motion is a consequence of Fourier’s law of heat transfer, which specifies that the
rate of material transfer is proportional to the heat flux f = —Kpc,VT, with p and ¢, the liquid density and specific
heat, respectively. Combining Fourier’s law with the conservation of mass leads to a normal boundary velocity
Vu(s) = —(Kc,/DOT /dn at the interface, where [ is the latent heat of the liquid.

In the following, we assume that the solid and liquid are defined in the periodic domain T2 = [0, 27] % [0, 2] and
the solid domain ;s is simply connected, as shown in Fig. 1(a). The moving interface I'(r) between the solid and
liquid phases is assumed to be smooth, and parameterized by the arclength parameter s € [0, L), where L(¢) gives the
circumference of I'. Rescaling time as ' = ¢/K, temperature as ¢ = (T — T,,)/AT (where AT = IItl_%X(|T —T,]), and

dropping the ’ notation on ¢ gives the dimensionless equations

oc .
i Ac  in Qjiguia, (3a)
c=c¢, onl(), (3b)
Vi = ﬁ@ on I'(9), (o)
on
c(x,0) =co in Qijguia- (3d)

It may appear that there is one too many boundary conditions for c. Note however that one serves to fix ¢, while the
other defines the evolution of the time-dependent interface I'. Only one parameter — the Stefan number § = —c,AT /!
— controls the dynamics of the dimensionless system. For the solidification problem (¢ € [-1,0],¢c,, = OonD),
it has been observed that the Stefan problem posed in Eq. (3) undergoes a Mullins-Sekerka instability, caused by
rapid growth of the interface in high-curvature regions. This phenomena will be further demonstrated with numerical
examples in Section 5.

It is worth noting that Eq. (3) also models the dissolution process, where the temperature field is replaced with the
concentration field ¢ € [0, 1]. The parameter space in melting, solidification and dissolution is listed below.
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Process B range of ¢y | ¢y,
melting —c,AT/l [-1,0] 0
solidification | —c,AT/I [0,1] 0
dissolution p/ps [0,1] 1

The parameter p; in the case of dissolution is the solid density. The Stefan number S is positive for dissolution
processes as lower liquid concentration ¢y leads to dissolution hence V,, < 0; however 8 < 0 for the melting and
solidification processes since lower liquid temperature leads to solidification and V,, > 0. In the following sections
we will neglect to distinguish between the heat and the mass transfer problems, instead referring to them simply as
Stefan problems.

2.2. The Stefan problem with natural convection

In the liquid phase, temperature or solute concentration differences lead to changes in the specific volume of fluid
parcels, and hence the fluid density. These changes in density lead to the buoyancy driven convection that typically
accompanies melting and solidification processes. Using the Boussinesq approximation [11, 30], we treat the fluid
as incompressible and subject to a buoyancy force B oc —c§y that is proportional to the concentration difference. The
concentration field c(x, ¢) diffuses and is advected by the flow field u(x, 7). The complete model in dimensionless form
is given by

oc 1 .
E +u-Ve = ﬁAC m Qliquicb (4a)

ou 1 PO
E +u-Vus= R_eAu - Vp —Ccy In Qliquid9 (4b)
V-u=0 in Qjguia, (4c)

_ B oc

Y= pean b 0
u=0,c=1 onT, (4e)
u(x, 0) = up(x), ¢(x,0) = co(®) i Liigia- (40

In the experiments of dissolution that motivated this numerical study [7], dissolution occurred in a tank, with solid
boundaries at the bottom (and an air-liquid interface at the top). To approximate these conditions, we place adiabatic
walls I',,,; at the top and bottom of the domain so that the liquid is bounded from above and below but periodic in the
horizontal direction; see Fig. 1(b). At these walls, fluid motion ceases and the walls are impermeable to the solute, i.e.
we impose that u = 0 and d,¢c = 0 on I';,,;. The behavior of this system is controlled by the Reynolds number (Re) of
the fluid and the Péclet number (Pe) of the advection diffusion equation, and the parameter 8 that governs the rapidity
of boundary evolution. Because time is rescaled by the typical flow speed, the diffusivity is now 1/Pe instead of 1
in Eq. (3), and the Stefan number in this problem is /Pe instead of 5. These parameters are typically related to the
Grashof number Gr and Prandtl (or Schmidt) number Pr (or Sc) as Re = \Gr, Pe = NVGrPr (or \/ESC) [31]. In heat
transfer problems, Gr = a/VgL3 AT /v? and Pr = v/K, with ay, g and v the thermal expansion coefficient, acceleration
due to gravity and kinematic viscosity respectively. In mass transfer problems, Gr = SygL?/v* and Sc = v/D, with
Bv, & D and v the relative density difference between the solid and the fluid, acceleration due to gravity, molecular
diffusivity and kinematic viscosity respectively. As we will show later in Section 6, an important control parameter
of dissolution under natural convection is the Rayleigh number Ra = GrSc = RePe = SygL?/vD, which governs the
regimes of dissolution shape dynamics.

For the familiar case of ice melting into water [4] at room temperature, Gr is in the range of 10° - 107, Pr is around
1 and 8 is around 0.1, leading to a Reynolds number Re ~ 103, a Péclet number Pe ~ 10° and a Rayleigh number
Ra ~ 10°. For candy dissolving into water [7], Gr is in the range of 108, Sc is around 10%, and B is around 1, leading
to a Reynolds number Re ~ 10*, a Péclet number Pe ~ 107 and a Rayleigh number Ra ~ 10'!. The following table
summarizes the definition and typical ranges of the parameters for these cases.

Process Gr Pror Sc Re Pe Ra
melting or solidification aygL’AT /v | Pr=v/K VGr VGrPr GrPr
typical range [4] 10 — 107 1-10 103 - 10* | 103 —10* | 10°-108
dissolution of sugar into water Bvel? |V? Sc=v/D VGr VGrSc GrSc
typical range [7] 103 — 10'° 103 —10* | 10*-10° | 107 —10° | 10! - 10
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We remark that the u = 0 boundary condition given in Eq. (4e) is not exactly a no-slip condition because the
interface is moving. However, in all simulations in this paper and most dissolution processes in nature, the Stefan
number 3/Pe < 1. Since typical fluid velocities u are O(1), we assume that the boundary is in a quasi-steady state,
and u = 0 is a good approximation of the no-slip condition.

2.3. Gibbs-Thomson effect

During melting, solidification, and dissolution processes, surface effects such as surface tension and molecular
kinetics modify the dynamics of the interface. The classical Gibbs-Thomson effect [32, 29] is an idealized way to
summarize these surface effects: an additional term that dissipates high curvature regions is added to the normal
boundary velocity,

Vo= B oc , 2m
Pe 0n

' K 2 ) onl, ®))
where «* is the planar curvature and L is the total arclength of I". The Gibbs-Thomson effect causes faster dissolution
to occur in regions where the local curvature «* is higher than a mean curvature 2/L [32, 29]. With no phase-
change driven boundary velocity [that is, the first term on the right-hand side in Eq. (5)], the Gibbs-Thomson effect
simply drives the boundary to a steady form: a circular arc with curvature «* = 2n/L everywhere. Physically, the
Gibbs-Thomson effect comes from the balance between the energy of fusion — which represents the energy exchange
during phase change — and the surface energy that is a function of the curvature «* [32]. When the local curvature
is high enough, the surface energy overcomes the energy of fusion and drives interfacial motion. Numerically, the
Gibbs-Thomson effect defines a minimal spatial scale at which Mullins-Sekerka instabilities occur.

3. Numerical methods

Solving Eq. (4) presents two central difficulties: (1) solving the Navier-Stokes (NS) equations in the evolving
domain Qjiquig, and (2) solution of the advection-diffusion equation for ¢ in that same domain. Because the boundary
evolution is itself driven by gradients of ¢, the quantity dc/dn must be captured accurately at the boundary. We first
discuss the Navier-Stokes equations. In 2D, the NS equations can be reformulated using the stream function y and
the vorticity w, as

ow 1 dc .
E +u-Vo = EACU - a_x m Qliquid’ (63)
Ay = —w, u=V_ inQjgia, (6b)
Y=¢,=0 atTUT,, (6¢)

where V_ = (0, —0,). The driving term —dc/dx arises due to the Boussinesq approximation of the buoyancy forces,
which appears as the term —c§ in Eq. (4b). In this formulation, solution of the pressure field is no longer required,
which typically poses difficulties due to the lack of boundary conditions. Nevertheless, the equations do not decouple:
Equation (6a) lacks a boundary condition on w, while there are two boundary conditions imposed on the stream
function.

To efficiently discretize the full nonlinear system, we will treat the non-linear terms explicitly, and the linear terms
implicitly. A full description of the timestepping scheme we use is given in Section 4; here we give a simplified
description in order to introduce the various subproblems that must be solved. Representing the boundary I" with its
Cartesian coordinates X = (x,y) € I', the simplest implicit-explicit time discretization is to combine the forward and
backward Euler schemes:

At
(]1 -5 A) A = ¢ — A’ - V') in Qiiguias (7a)
Ar 0 t+At
(]1 - R_eA) W™ = W' — At|u - Vo' + (a—i) in Qiiguids (7b)
A'J/H—At _ _wH—At’ u A = VJ_WHAZ in Qiiguids (7¢)

X+ =X"+ ArV,n onT. (7d)
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1+At t+At

with boundary conditions on /2" and ¢'*** as given in Eqgs. (4) and (6). One can first evolve ¢, so that ¢/** is known
and can be used explicitly in the RHS of the vorticity equation. For more general, timestepping schemes, the temporal
discretization takes the form:

(I = oA = fu(cu')  in Qiiguia, (8a)

(I - o, A™ = £, o', ™) in Qyiguias (8b)
AP = —™ A in Qpiguias (8¢)

XA = (XXM V) onT. (8d)

Here o, o, f.,and f,, depend on the choice of time discretization. There are thus two essential components required
for evolving this system: (1) a scheme for evolving the interface I' [Eq. (8d)], which will be introduced in Section 3.1,
and (2) Modified-Helmholtz solvers for both the concentration evolution Eq. (8a) and the coupled Navier-Stokes
system [Egs. (8b) and (8c)]. The methodology for solving these PDE will be introduced in Sections 3.2 and 3.3, as
well as some technical considerations that arise when solving the fully coupled system.

3.1. 6-L method for boundary evolution

For a variety of boundary evolution problems, including the Stefan problem studied here, as well as problems
with an interfacial surface tension, discretization and evolution of the boundary in Cartesian coordinates can lead to
stability issues due to the fact that only the normal motion of the boundary I' is fixed by the physics. Discretized
boundary markers moved only according to the normal velocity typically clump or spread. To alleviate the issues that
arise with a direct discretization of the boundary position, we instead use the 6-L method to discretize the boundary by
the arclength s and tangent angle (s, #). This method is well-developed and has been used extensively for the study
of 2D free-boundary problems in fluid dynamics [27, 28, 29, 33, 34]. We provide a brief overview of the method here.

Consider a domain as depicted in Fig. 1(a) where the boundary I' has total arclength L. Given an arclength
parameter s, we define a rescaled arclength @ = s/L, with @ € [0, 1], where @ = 0 corresponds to the top point. The
boundary I' can be parameterized by the tangent angle 6(«, t), the total arclength L, and the position of the top point,
with the Cartesian coordinate recovered by solving 9,X = (9,x, 9,y) = (L cos 6, Lsin ) and X(0) = (xo, yo) as the top
point of the solid body. Evolution of the boundary X = (x(a), y(@)) is given by

0X

E =Vn+ Vs, (9)
where n and s are unit vectors along the normal and tangential direction at a given point on I'. As the normal velocity
V., governs the shape evolution, the actual shape dynamics of I" are independent of the tangential velocity V. We are
thus free to add an arbitrary tangential velocity without altering the effective physics. One choice that preserves the
equal-arclength distribution and keeps @ and ¢ as independent variables [29] is

* 50 L
v, = f —V,(@)dd f —V,(@)de. (10)
0 (9(1/' 0 (9(1’
With V,, and V; specified, Eq. (9) can be written as

dL o0
= —V,(o)da, 11
7 | e ()da (11a)
09 1 (daV, 00
— == — . 11
ot L(aa " éaa) (110)

In addition to evolving 6(«a, t) and L(f), the motion of an anchor point is required to recover the absolute location
of the boundary I'. In this paper, we use the top point (xg, yo) as this moving anchor. These satisfy the equation

% — V,(0) cos 6z, 0), (12a)
DO _ v 0y sin 0z, 0). (12b)

dt
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When the interface I is a smooth, closed curve, Eq. (11) can be solved accurately using a Fourier spectral method.
When including the Gibbs-Thomson effect [Eq. (5)] in the boundary evolution, the 8 equation is instead

2 2
69:%(,3 d*c 89) € 0°0 (13)

— — +Vi— |+ =—.
ot Pednda  “da)  L?da?
Thus the Gibbs-Thomson effect smooths the boundary by dissipating regions with high curvature.

3.2. IBSE* for solving Poisson and Modified-Helmholtz equations

In this section we provide a basic outline of the Immersed Boundary Smooth Extension (IBSE) method, focusing
on the details most relevant to the numerical scheme for the Stefan and dissolution problems studied in this paper. A
careful analysis of the method is presented in [24, 25]. The essential idea of this method is to find a smooth extension
of the unknown solution from the physical domain to the entirety of a computationally simple domain, such that the
first several derivatives of the unknown solution and its extension match across the physical boundary. To simplify
the presentation, we first consider the inhomogeneous Poisson problem:

Au=f in Q, (14a)
u=g onl. (14b)

One way to compute an inhomogeneous solution is to compute an extension of f from Q to a larger domain C
containing ), which we assume has a simple geometry. Perhaps the simplest choice of C, and the one used throughout
this paper, is the periodic rectangle C = T? = [0, 27] x [0, 27], or a rescaled version of that domain. For this choice of
C the Poisson operator may be rapidly inverted via the fast-Fourier transform. The physical domain of the equations
is Q, the exterior of that domain is £, and C = QU E. Given a general extension f¢ € CX(C), u satisfies Eq. (14),
up to a homogeneous correction, to O(h**1) where h = 27t/N is the spatial resolution. There is significant freedom in
choosing f°. One such choice is to define /¢ = Au‘, where u° is an extension to the solution u of the PDE. In this case,
u satisfies the PDE without any homogeneous correction, although the extension f¢ must be determined implicitly,
as the solution u, and hence its extension u¢, is not known a priori. We describe some of the essential elements for
computing u in this manner below.

Let Q € C be compact and simply connected, with smooth boundary I' = 9Q. To facilitate generating the smooth
extension u¢ of the solution u, as well as to impose boundary conditions on I', we will need to be able to communicate
singular and hyper-singular force distributions known on I to the grid; and to interpolate values and derivatives of
functions known on the grid to the discrete boundary nodes of I'. Communication of singular forces is done through
the spread operators S (;, as

06(x — X(a))

G dX(@), (15)

SoP =1 [ Fi@
r
while approximations of a function and its derivatives at I are computed via the interpolation operators S ¢ Y

0’6 X
(%@@—(Wfﬂ»—ﬁ—ﬁ@ (16)

As is suggested by the notation, the spread and interpolation operators for the j derivatives are adjoint to each other,
and for j = 0 these operators reduce to the classical Immersed Boundary (IB) spread and interpolation operators [23].
The interpolation operator S ; ;) maps the j normal derivative of a function & from the domain C to the boundary T,
while the spread operator S, m'lps the hyper-singular forces from the boundary I" back to the domain C. To simplify
the notation for the rest of this study, we define the composite operators Ty, T}, and R} as

k

Te= S0, (17a)
Jj=0
* * * T

T;=(S Sty - Sw) (17b)

Ry =(S5, - s;k))T. (17¢)
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The operator 7} interpolates a function and its first k normal derivatives to the boundary; R; provides an interpo-
lation of the first kX normal derivatives to the boundary, excluding the function value itself; the operator T} spreads a
set of singular forces (6-like) and hyper-singular forces (like the first kK normal derivatives of the §-function) from the
boundary to the domain.

To solve Eq. (14), a function 7 is found that smoothly extends the unknown solution u# from Q to C such that
n € CK(C) and the first k derivatives of u match the first k derivatives of  at the boundary: d;u/d’n = d;n/8'n for
j=1,...,konT. There are many such extensions. We choose to compute 77 by solving a high-order PDE of the
form H*5 = 0 in C, where H* is a differential operator with sufficient order to allow us to impose that the derivatives
of 7 at the boundary match those of u. One such choice of H* is the polyharmonic operator A¥*!; this choice has a
nullspace and is poorly conditioned; the specific operator H* that we use will be defined in Section 4.2. The function
n then serves to define a force in all of C, given by f¢ = yof + xeAn. Inversion of the periodic Laplace operator with
this force provides a solution u,, smooth in C, that satisfies the boundary conditions and converges rapidly. The full
formulation, which we will refer to as the IBSE-k system, is given by:

Au, — xgAn = yaf in C, (18a)
Hn + TWF =0 inE, (18b)
Rin = Rue, (18c)

S;O)ue =g (18d)

In [24], the IBSE-k formulation given in Eq. (18) has been verified to produce C*(C) solutions that converge at a
rate of O(Ax**!) for k = 1,2,3; and may be used for solving the Helmholtz and Modified-Helmholtz equations, by
replacing A with (k* + A) and (K> — A), respectively. In [25], the IBSE method was extended to solve the Stokes and
Navier-Stokes equations. In the following sections, we will discuss how to modify these methods to provide a solver
for the Stefan and dissolution problems.

3.3. Navier-Stokes equations coupled with concentration field

In order to solve the coupled dissolution problem with the IBSE method, we let the physical domain be Q = Qjigiq
and the extension domain be E = Q;,;;s, and define the modified Helmholtz operators:

Ly =0-0,N), (19a)
L. =I-0c.A). (19b)

Roughly speaking, these operators will be used to define solvers similar to the solver described in Section 3.2. Specif-
ically, for the concentration Eq. (8a), we solve

Lec—xeLene = xafe in C, (20a)
H e + TiFe =0 inE, (20b)
Ri(e—¢)=0 atTUT,, (20¢)

S fo)c =g atT, (20d)

Sz‘])c =0 atT,,. (20e)

Next, we solve the Navier-Stokes equations, Egs. (8b) and (8c), with the known concentration field ¢, by solving
Eq. (20). In [25], the authors used a velocity-pressure formulation for solving fluid problems. Importantly, they noted
that the best stability and error was achieved when the regularity of extensions matched those expected from derivative
counting the PDEs: that is, if u is extended to be C¥(C), then p should only be extended to be in C*~'(C). We find a
similar phenomena in the streamfunction-vorticity formulation, and hence to find a velocity u = (u,v) in C k(C), we
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choose to extend w € C¥"1(C) and ¢ € C¥*!(C). Accordingly, the appropriate formulation is

Low = xELuNw = X kw inC, (21a)
Ay — xeAy, + @ =0 inC, (21b)
H'yy + Ty Fy =0 inE, (21c¢)
H* y + Tiai Fy = 0 inE, 21d)
RNy —w) =0 atT’ url,, (21e)
R,y —y¥) =0 atT UL, (21f)
So¥ =0 aaluT,, (21g)

Siw=0 atT' UT,. (21h)

The unknowns are (w, ¥, 4, My, Fw, Fy). In the next section, we discuss details of the numerics.

4. Numerical implementation

4.1. Numerical scheme for the 6 — L method

On the boundary I', the rescaled arclength o € [0, 1) is discretized using equispaced points, and Fourier spec-
tral (or pseudo-spectral) methods are used. The explicit equations in Eqs. (11) and (12) are integrated with a
fourth-order Adam-Bashforth method. At time ¢ = mA¢, Eq. (13) can be split into the non-stiff explicit part & =
(1/L™)[(B/Pe)(d*c/dnda)™ + V™(00/da)™] and stiff implicit part 7™ = [e/(L™)*](6?6/8a*)™. For this equation, we
use the fourth-order implicit-explicit IMEX) Backward Differentiation formula and the fourth-order Adam-Bashforth
formula:

At
L™ = L7+ 2 (S5V] =59V 437V —ovyY), (22)

2 4 1
ée'"“ — 40" + 30" - 59'"*2 + ZHH = At [I’"” +48" — 68" 4482 — 8””3] ) (23)

Here L” = (L™, x,yr") and V7' = (— L (mAt, @)V,(mAt, @)da, V,(mAt, 0) cos 6(mAt, 0), V,(mAt, 0) sin 6(mAt, 0)).

At timestep m + 1, the evaluation of 7! would require L"*!, so the explicit integration of x6”+1, x6”+1 and L™ is
performed first. @"*! is then found via the Fourier method.

4.2. Discretization of spread, interpolation and extension operators

In this section, we define the discrete spread, interpolation and extension operators introduced in Section 3.2;
we will not explicitly distinguish the discretized operators through different notation. Let 6 denote a regularized ¢-
function, defined by Cartesian products of regularized one-dimensional §-functions. We define normal derivatives of
5 to be

5 _ s

ey ey —22 2
oni M n’axil--'ﬁxij (24

where repeated indices i; are summed according to the Einstein summation convention. Using the standard spectral
discretization of the integral in Eq. (16), and replacing the ¢ function with its regularized equivalent, we define the

discretized spread operator to be:
Npdy

d5(x - X;
SR = > FlapZ2E= XD 5
i=1

- 2
=LA, 25)

X; = X(a;) is the ith coordinate of the boundary and As = L/n,, (note that for arbitrary parametrizations, As depends
on /X2 + YZ; however, since we use an arclength parametrization, this is constant). The number of nodes in the
quadrature is chosen so that As = 2Ax. Choosing As smaller yields better accuracy while choosing it larger yields
better numerical stability. The number of boundary points is 7,4, ~ L/(2Ax). Note that during the process of melting
or dissolving, the number of boundary points 7,,, must thus be updated as the total arclength L changes.



10 Jinzi Mac Huang et al. / Journal of Computational Physics (2021)

The interpolation operator is then defined through the adjoint property <u, SF >c = <S (s F > and is explicitly

given by
N N

&é(x;i - X
(S {0y = ZZ i (X’m ) Ay, (26)

Here the vector x;; — Xy = (2ni/N — X 1,2nj/N — Xk,g) points from the boundary point X; € I' to the domain point
x;j € C; the gridspacing Ax = Ay = 2x/N.

The accuracy of these operators is analyzed in [24], and depends on the choice of the underlying regularized
S-function. We use the C3 function with a support width of 16Ax defined in [24]; with this choice the interpolation
operator provides fourth-order accurate approximations for the Oth to 3rd normal derivatives of smooth functions.

Finally, we must choose the extension operator(s) H* used in Egs. (20) and (21). This should be a high-order
differential operator, so that a sufficient number of boundary conditions can be imposed. An obvious choice is the
poly-harmonic operator of the appropriate order, but this is both poorly conditioned and has a null-space. Adding a
scalar ® remedies the nullspace, and its size may be used to control the condition number of the system that must be
solved, at the expense of adding an artificial length-scale to the problem that must be resolved by the discretization:

HE = A 4 (=D Ok, m). 27)

The choice of ® depends on the smoothness k and the largest wave-number m present in the discrete Fourier
transform on the discrete domain C. The condition number of H* is

2(k+1)
m
= 1 + . 28
K ) (28)
while the intrinsic lengthscale introduced is ®~!/2¢*D_We choose @ as

1\
0" = , 29
(N Ax) 29)

as in [25]. Here N is a parameter that controls how many points are used to resolve the intrinsic lengthscale introduced
by H*; for all simulations in this paper N’ = 10 is used.

4.3. Smoothed characteristic functions x g and yq for stiff modified-Helmholtz problems

When solving the diffusion equation with a small diffusion coefficient and/or small timestep, time-discretization
yields a modified Helmholtz problem with a very small Helmholtz parameter. In fact, this parameter is typically
artificially small, in that it introduces a length-scale that is below any relevant to the physical problem. However,
if this length-scale is not resolved, the standard IBSE solver may yield low-quality solutions, especially during brief
transient phases (i.e. for small times ¢ around the startup of a dissolution problem, when ¢ jumps discontinuously from
1 to 0 across the interface, and diffusion has yet to have enough time to regularize the solution). Stability, although
not accuracy, may be recovered in these circumstances by using smoothed, rather than sharp, characteristic functions
Xo and yg. The family of functions we adopt here are the Wendland functions [35]:

! s(1 =) =y 'ds forO<r<l,

30
0 forr > 1. (30)

¢l,m(r ) = { W fr
Here m is an integer controlling the smoothness of Wendland function, and / = [m + d/2] + 1 with d = 2 as the
spatial dimension in our study. It can be shown that Eq. (30) produces a C*"'(R*) function. We also define the integral
of Wendland function as ®(r) = f_roo d1m(s)ds/ f_z d1m(Is)ds, so @(r) = 0 when r < —1 and ®(r) = 1 when r > 1.
Throughout our study, we choose m = 2 and [ = 4 so all functions involved are at least C*, and define the smoothed
characteristic functions yz and yq as

XaX) = 0" (x)/dy), (31)
XeX) =1-Ya(x). (32)
Here r*(x) is the signed distance between x and the boundary I', such that »*(x) > 0 when x € Q and r*(x) < 0

when x € E. d; is a smoothing length-scale that is chosen to be 4Ax. In general, d; should be small enough that the
boundary layer structure can be sufficiently resolved.
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4.4. Inversion of the IBSE-k system using Schur complements
For the pure Stefan problem, Eq. (20) can be written in block form as

L —XEkL 0 \(c) (Rafe
0 H T [In.| | O
R —rRe Jo i [oF] (33)
Sty 0 0 ¢ g

As shown in [24, 25], the size of this system can be reduced to knpgy X knpgy by computing the Schur complement

(SC) 1
s, W6 ) () o

S 0 Jlo  H* Ty

Equation (33) may then be reduced to

SC-F,.= ( (35)

R L 'Raf: )
Sz‘())-lzc_lx%ﬂfc -8 '

During each time step, the m-th column of SC can be prepared by applying the RHS of Eq. (34) to a vector a such
that a; = §,. Although this computation is relatively expensive and must be done knyqy times, it is embarrassingly
parallel, significantly reducing the preparation cost of SC on a multicore system. Equation (35) can then be inverted

to solve for F,.. Once F, is known, we may find 7, and c:
ne = (HY ' Ty F.., (36a)
¢ = L' (Rafe + ReLene). (36b)

It is worth noting that SC depends only on the boundary geometry, which is slowly changing in the Stefan problem.
As the preparation of the SC is expensive, we seek to reuse it, effectively amortizing its formation cost over a number
of timesteps. In the simulation, SC™ is prepared at a time step m and decomposed into LU components such that
LMy = §C™_ Since the boundary I' changes slowly, M = (L™ U™)~! serves as a good preconditioner for solving
the linear system Eq. (35) for some number of timesteps. Once the SC fails to serve as an effective preconditioner,
it is recomputed. Reformation of the SC is triggered by two criteria: (i) it takes too many iterations for GMRES to
converge (more than 10 iterations in all examples in this manuscript); (ii) the boundary size n,4, is changed (since
npay = L/2Ax and the arclength L is changing). We call recomputation of Schur complement a “SC renewal”. In
Section 6.5, we show how often SC renewal happens for a particular simulation.

Next, the Schur complement for Eq. (21) is formed in the similar way. The discrete equation is

Lw 0 _)?ELQ) 0 0 0 w /%Qf(u
I A 0 —xeA | 0 0 v 0
0 0 H*! 0 Trer 0 Nw 0
0 0 0 HrH 0 Ti |[mw|=] 0 37)
R, ? -R;_, 0* 0 0 F, 0
0 R; . 0 R, | 0 0 F, 0
0 T, 0 0 0 0 0
To distinguish from SC, we define the Grand Schur complement (GSC) for this system,
o -1
R*_ 0 _R*_ 0 Lw 0 _XELM AO 0 0
Gsc=| 0 k., 0 -k ||L & 0 kel 0 0 (38)
- 0 ;;1 0 Lo 0 HE! 0 Trer O
1 0 o 0 HrH 0 Ty
Equation (37) becomes
R; 0 -1
F, _ ket * -[:m 0 /?wa
(asc )(Fw)_ 0 K, (]1 A) ( .l (39)
0 T

Once Eq. (39) has been solved for (F,, F), the remaining unknowns (w, ¥, 17,,, 17,) can be determined in a manner
analogous to Eq. (36). The GSC is a 2knyg, + 1 square system, where the additional equation is added due to the null
space of the Laplace operator (see Appendix B of [24]).
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4.5. Outline of the numerical solver

Here we sketch a brief outline to solve the Stefan problem and its related flow problem with IBSE. At each time
step,

1. The shape of the moving boundary is determined by solving Egs. (12) and (22). 4"order Adam-Bashforth and
IMEX schemes are used for time integration, and the spatial equation is solved using a Fourier spectral method.

2. Operators such as T, T*,R,R*, S, S ™ are prepared according to Egs. (17), (25) and (26).

3. If the simulation is running for the first time, or one of the two SC (GSC) refreshing conditions is met, the Schur
complement will be prepared according to the procedure introduced in Section 4.4.

4. The concentration field c is solved first through Eq. (33) - Eq. (36). The value of d,c is then evaluated with
Fourier differentiation, the value of d,c at the boundary is calculated by applying Sz‘l) to ¢ and the boundary
velocity V, is computed according to Eq. (5).

5. The vorticity w and the stream function i equations are solved through Eq. (37) - Eq. (39). The flow velocity
field u = V_ ¢ is then calculated and serves as the advection term u - V¢ in f, for the next time step.

For a pure Stefan problem without flow, only step 1-4 are involved.

5. Results: Stefan problems

In this section, we use the method described in Sections 3 and 4 to solve Stefan problems with the form:

oc .
E =Ac m Qliquid’ (403)
V, = ﬁ% onT, (40b)
on
c=0 onT, (40c¢)
c(x,0) = -1 in Qjiguia- (40d)

Physically, these equations describe the growth of a solid body into its over-cooled liquid surrounding as discussed in
Section 2.1. We first examine the convergence of the numerical scheme with an analytic solution, demonstrating the
expected order of convergence for the temperature and boundary position (up to third-order, in L*, depending on the
regularity of extensions). We then examine an unstable problem, and show that the method qualitatively produces the
typical growth patterns driven by the Mullins-Sekerka (MS) instability.

5.1. Convergence of the Stefan solver

An exact solution for a circle growing in infinite space (known as the “Frank disk™) [20] stays circular during the
freezing process (although small perturbations, if present, will drive the Mullins-Sekerka instability, as in Section 5.2).
The radius of the Frank disk, as a function of time, is R(f) = S V¢, where S is a parameter determined by S and c.
The associated temperature field is:

0 fors <8y,
C—{ Cw(l F(s) (41)

- F(RU)) fors > Sy,

where s = [x|/ Vi, F(s) = Ei(s*/4), and Ey(2) = 2 [ “ e /tdt. ,
we let 8§ = —0.4, Sy = 1.2, and begin simulations starting at ¢t = 0.1 with an initial radius R(0.1) = 0.38.
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Fig. 2: Frank disk solution of the Stefan problem and a convergence test of the numerical solver. (a)
numerical solution ( ) and the exact solution
( ). The circular initial shape remains circular until periodicity limits the growth of the

interface. (b) The total arclength of the interface L grows as the square root of time. The numerical solution (IBSE-2,
solid line) matches well with the free-space analytic solution (dashed line), especially at short times.

(c)-(e) L*™ error of the numerical solutions. For
IBSE-1, 2 and 3, the concentration field c, total arclength L and boundary velocity V, converge to the exact solution
at 1%, 2", and 3"order, respectively.
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Fig. 3: The development of Mullins-Sekerka instability. (a) The initial shape is a circle perturbed with sinusoidal
waves. The solution in the physical domain (liquid) and the exterior domain (solid) are both shown. (b) High curvature
regions of the interface tend to grow faster, and form finger-like instabilities. (c) Contour plot of the interface. It is
clear that the extruding high curvature region grows faster. (d) The arclength L first grows and then saturates. The
saturation is due to the temperature reaching equilibrium in the liquid, which is ¢ = 0 in the physical domain. Movie
of the full simulation can be found in supplemental material S1.

In order to test the accuracy of our solver, we thus solve for only a short amount of time: to ¢t = 0.11 (for times
larger than 7 2 0.11, periodic effects, although still small, become comparable with the errors achieved by the IBSE-3
method.). In Fig. 2(c)-(e), we show a convergence study for the arclength L of the boundary, the concentration field
c(x, 1) and the boundary velocity V,, as computed using the IBSE-1, 2, and 3 methods with At = 0.1/N and N/10
timesteps. Startup values for the BDF-based IMEX timestepping scheme are computed from the analytic solution. All
errors are measured against the analytic solution in L*, and a convergence rate of O(h*) is observed for all variables
examined.

. The IBSE-k method achieves an O(h**!) convergence rate for Dirichlet problems
with defined boundaries [24]. In this problem the interface location is moving with the normal velocity V,,. Computing
this velocity requires estimating dc/dn, which is only accurate to O(h*). This error is propagated through the boundary
location to all other variables.

5.2. Mullins-Sekerka instability

The Mullins-Sekerka (MS) instability is frequently observed when solidification occurs in an over-cooled fluid
[18]. The solid stays at the melting temperature (¢ = 0, here), and the temperature gradient determines the rate of
liquid solidification. Regions of the interface with higher curvature result in locally higher temperature gradients,
enhancing the local solidification, further increasing the local curvature. Thus once the local curvature begins to
deviate from the mean curvature, the MS instability leads to growth of those deviations.

In this section, we demonstrate that our solver is able to qualitatively capture the dynamics driven by the MS
instability. We start with a perturbed geometry that has L = 7 and 6 = 0.57(1 — 4a) + 0.6 sin (24n«@), as shown in
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Fig. 4: Refinement study of the Stefan solver coupled to an incompressible viscous flow. The spatial discretization and
timestep are refined simultaneously so that Ax/Af remains constant. The bulk fields ¢ (concentration), w (vorticity),
and ¢ (streamfunction), as well as the surface quantities 6 (tangent angle), L (total arclength), V, (boundary velocity),
and 7 (shear stress) all show second-order convergence in the L* norm (over Qjquiq for bulk fields and I for surface
quantities.)

Fig. 3(a). For this computation, the Stefan number is 8 = —0.2 and we use the IBSE-2 method with N = 300 and
At = 5 x 107*. In order to prevent the formation of singular features on the boundary, regularization via the Gibbs-
Thomson effect is required, and we set € = 0.002. Figure 3(a)-(b) shows the development of the MS instability, and
the shape profiles of this process are shown in Fig. 3(c). An associated movie is included in supplemental movie S1.
The flat part of the boundary grows slowly while the high curvature part grows rapidly, and the resulting growing front
further bifurcates into extrusions, which can be seen in Fig. 3(c) on the branches at in the NE (Northeast), SE, SW
and NW directions. The arclength of the interface is shown in Fig. 3(d). Eventually, the growth of the solid is limited
by the periodic computational domain and the saturation of temperature in the liquid [Fig. 3(b)]. The solidification
stops as the liquid reaches an equilibrium temperature of ¢ = 0 everywhere.

6. Results: Stefan problems coupled with Navier-Stokes flow (dissolution)

We now turn our attention to the case of a Stefan problem coupled to an incompressible flow. When the Reynolds
number is high, the BDF-based IMEX scheme used to timestep pure Stefan problems severely limits the timestep. We
instead use a 2"-order method based on an Adam-Bashforth Backward-Differentiation (ABBD) scheme. Spatially,
we set k = 2 in Egs. (20) and (21),s0c € C*t,weC'ueC?and Y e C3. At time ¢, the set of equations

I-o)' = f in Qiguia, (422)
I-ouMo' = in Qjiguia, (42b)
Al,l/t = _0-)[ in Qliquids (42C)
v=y,=0,c=1 onT, (42d)
W=y = ,?=o onT, (42¢)
is solved, where
2At 2At
Oc = ﬁ’ Ow = % (43a)
. 2At —At oar] L L (A o
f :—T[Z(u~Vc) —(u-Ve) ]+§(4c - ), (43b)
2At| 0 1
fo=-7% [(a—;)f +2(u- V)™ — (u- V) | + 3 (4™ = @21 (43¢)
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Fig. 5: Stefan problem with natural convection. The color-map shows the concentration field ¢, overlaid by contours
of the streamfunction i . The interface is highlighted in red. A boundary layer forms around the dissolving body, and
flow separates at the bottom stagnation point. In this simulation, Re = 316, Pe = 316 and Ra = 10°. A corresponding
movie can be found in supplemental material S2.

The concentration Eq. (42a) is solved first, so that the value of dc/dx at time ¢ is known in Eq. (43c). Anti-aliasing
for the non-linear terms is done by smoothly rolling off high-frequency modes, using the method introduced in [36].

6.1. Convergence of the dissolution solver

We first ensure that our solver achieves the desired order of accuracy through a refinement study. We let Re = 3.16,
Pe = 3.16, 8 = 0.1, and € = 0.1. The aspect ratio of the domain is taken to be 4/3 (width / height, controlled by
adjusting the wall size). We run simulations at grid-sizes of N = 32,64, ...512 with the timestep At = 0.01/N. Each
simulation runs for N steps in time so 7,,; = 0.01 for all simulations. Figure 4 shows, for both bulk and surface fields,
the difference, measured in L™, between the solution with a grid size N and N/2; achieving the expected second-order
convergence. Moreover, our method accurately captures the surface shear stress T = Re™'0%y/0n?, enabling us to
study near surface flow phenomena such as the boundary layer separation in Section 6.5. As with the pure Stefan
problem examined in Section 5.1, total accuracy is limited by the estimation of the boundary velocity V,,, which is
only second-order since it depends on dc/dn and ¢ € C*(C).

6.2. Dissolution problem in the laminar boundary layer regime

We initialize a problem with a circular solid domain immersed in fluid that initially has no solute concentration.
When the Reynolds and Péclet numbers are moderate, the system displays an up-down symmetry breaking, as shown
in Figs. 5 and 6. In Section 6.3, we show how the shape dynamics changes across a range of parameters, and argue
that pattern formation is driven primarily by increasing the Rayleigh number Ra = PeRe. For the simulation in Figs. 5
and 6, we have set Re = 316, Pe = 316, Ra = 10° and the Stefan number to B/Pe = 0.003, while the Gibbs-Thompson
effect is set to be low at € = 5 x 107*. The grid size in this simulation is N = 300, and the timestep is At = 0.004.

Figure 5 shows the concentration field ¢ and the contour lines of the streamfunction ¢. Fluid with higher solute
concentration has a higher density than the ambient fluid, and the buoyancy difference results in a gravity driven
downward flow. A movie of the simulated dissolution process can be found in the supplement material S2. At the
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Fig. 6: Shape dynamics of the Stefan problem with natural convection shown in Fig. 5. (a) The position of the
interface as a function of time (early times blue, later times red). At later times, the geometry is asymmetric, and
appears egg-shaped. (b) The area of the dissolving body decreases in time with a power law A/Ag = (1 —1/t7)3/°. The
numerical value of area (blue circles) matches the predicted power law (dashed line), except for the beginning where
the boundary layer is not fully established.

Reynolds and Péclet number of 316, a gravity driven flow forms within the boundary layer near the solid, and separates
from the body only at the bottom stagnation point. Two vortices are clearly seen below the dissolving body, due to
the combination of the downward flow and the splitting flow at the bottom wall. In the later stages of the simulation,
a circulation pattern of four vortices can be seen across the computational domain, as shown in Fig. 5(d). Overall, the
flow is in a laminar regime, and the competition between the viscosity/diffusion and the gravity driven flow leads to
the formation of the boundary layer surrounding the dissolving solid.

The time-dependent profile of the interface between the solid and fluid domains is shown in Fig. 6(a). The initial
trace is shown in blue, and the final trace in red; successive curves are equispaced in time. From the initial circular
configuration, the up-down asymmetry develops into an egg-shaped geometry. Comparing the spacing between each
interface, we see that the top of the solid domain dissolves fastest, as the fluid near the top separation point is the
freshest (that is, has a low solute concentration). Flows around the interface appear to stay attached until the very
bottom of the body, and the variation of ¢ is mostly contained in a laminar boundary layer. This enables us to establish
a boundary layer scaling. It is known that the concentration gradient within the boundary layer of natural convection
has the scaling dc/on ~ L='/* [31], where L(#) is a typical length-scale that we choose as the total arclength. So the
boundary velocity V,, ~ dc/0n ~ L~'/4, and the rate of area change can be estimated as

— ~ LV, ~ L3 ~ A3,
dt "

A _(, t\*°
AO_ Iy ’

where Ag = A(0) is the initial area while ¢/ is the time at which the solid body vanishes. After fitting this parameter
(ty = 72), the numerical value of the solid area fits the predicted scaling law, see Fig. 6(b). We note that the simulation
deviates from the power-law prediction near the beginning; this is to be expected as the boundary layer is not fully
established.

Within the laminar boundary layer regime, the interface remains smooth and rounded. As we shall see in the
proceeding examples, the boundary layer becomes unstable when the Reynolds and Péclet numbers are increased,
and the interface geometry becomes more complex.

(44)

Integration yields

(45)

6.3. Shape dynamics as Rayleigh number increases

To understand the parameters affecting shape dynamics, we run simulations across a range of Reynolds and Péclet
numbers. For this parameter sweep, we hold the Stefan number 8/Pe = 0.003 fixed so that changes in shape dynamics
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Fig. 7: Dissolution at various Rayleigh numbers. (a)-(e) At r = 40, with the Stefan number fixed at 5/Pe = 0.003,
higher Rayleigh number results in finer structures in both the concentration field and the solid geometry. Adjacent
contours of the interface shape are separated by Ar = 30. (f) Phase diagram of the maximum curvature of the evolving
interface as a function of Pe and Re. Lines of constant Rayleigh number are shown in white, and configurations
corresponding to (a)-(e) are labelled in red dots. Movies of (a)-(e) can be found in supplemental material S3-S7.
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Fig. 8: Comparing simulations with the same Rayleigh number but different Reynolds and Péclet numbers. (a)-(b)
Shape dynamics of dissolution at a low Rayleigh number Ra = 6.785 x 10*, parameters Re and Pe for (a) and (b)
correspond to point (b) and (b’) on Fig. 7(f). The contours with same color are selected such that they have the same
arclength L. (c)-(d) Shape dynamics of dissolution at a high Rayleigh number Ra = 2.875 x 10°, parameters Re and Pe
for (¢) and (d) correspond to point (d) and (d’) on Fig. 7(f). The contours with the same color have the same arclength.

are driven solely by changes in Pe and Re. Sweeping through Pe and Re changes the Rayleigh number Ra = RePe.
Figure 7(a)-(e) shows 5 simulations with their concentration and flow fields at t = 40 and their shape evolution in color
contours, with parameters: (a) Re = 100, Pe = 275, Ra = 27500; (b) Re = 250, Pe = 275, Ra = 68750; (c) Re = 100,
Pe = 1150, Ra = 115000; (d) Re = 250, Pe = 1150, Ra = 287500; (e) Re = 300, Pe = 1500, Ra = 450000. Movies
corresponding to Fig. 7(a)-(e) can be found in the supplemental movies S3-S7. Two observations can be made as the
Rayleigh number increases: first, the boundary layer separates before reaching the bottom stagnation point; second,
the length-scales present in the concentration, flow fields, and interface become finer.

As a measure of the scale over which patterns are formed, we examine the non-dimensional curvature k = —96/0a.
The actual planar curvature is k* = x/L(t), which diverges as L(f) — 0. In Fig. 7(f) we show max,, |«(a, t)| for each
set of parameters. In all simulations this curvature increases and peaks soon after the moment of boundary layer
detachment, and decreases thereafter. The boundary layer detachment is associated with the formation of near-corner
regions with high curvature, while the Gibbs-Thomson effect limits the growth of this curvature and diffuses the
distribution of 8 over time [29, 37].

It is apparent that the curvature increases as Re and Pe increase, although neither parameter explains the growth
on its own. In the phase diagram Fig. 7(f), we plot contours of constant Ra as white lines. As the maximum curvature
is nearly constant on these contours, and increases with increasing Ra, it is apparent that Ra plays a central factor in
determining the pattern morphology.

To further investigate the dependence between dissolving shape dynamics and Rayleigh number Ra, we compare
simulations with the same Ra but different Re and Pe. In Fig. 7(f), two points (b) and (b’) have the same Rayleigh
number Ra = 6.785 x 10%; their dissolving shape dynamics are shown in Fig. 8(a)-(b). Although the two simulations
have different Re and Pe, we see that the resulting dynamics show visual resemblance. This similarity is also seen for
higher Ra, as shown in Fig. 8(c)-(d) which correspond to the points (d) and (d’) in Fig. 7(f). One possible explanation
for the similarity in shape dynamics is that the density plume size is a function of the Rayleigh number [13], so similar
Ra results in similar length scales presenting in the flow/concentration fields and the geometry.

6.4. Solver behavior as flow structure changes

SC/GSC renewals are significantly more time consuming than timesteps (although the exact ratio depends on
many factors, including the discretization, machine core-count, and the number of GMRES iterations required). To
assess the performance of our numerical solver, we show the number of GMRES iterations per timestep and the
number of SC/GSC renewals for the simulation shown in Fig. 7(d). As shown in Fig. 9, the SC and GSC are, on
average, renewed every 100 timesteps, resulting in significant amortization of the renewal cost.

At the beginning of the simulation, the initial concentration field is O in the fluid and 1 at the boundary. The
sharp gradient at the dissolving boundary drives rapid boundary motion and the SC renews at a fast pace. As the
concentration builds up around the boundary, the renewals become less frequent. After a SC/GSC renewal, the number
of GMRES iterations steadily increases as the boundary shape deviates more and more from the shape at last renewal.
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Fig. 9: Number of GMRES iterations and renewals of the SC/GSC during a simulation. The Schur complement renews
more frequently when the boundary moves rapidly, especially at the beginning of dissolution and at the moment
boundary layer separates. Corresponding simulation is shown in Fig. 7(d) and supplemental movie S6.

Rapid boundary motion also happens at the moment of boundary layer separation, where the built up concentration
field around the boundary becomes gravitationally unstable and a downward jet forms as the concentration blob drips
(supplemental movie S6). As the thickness of the boundary layer 6 suddenly decreases, the resultant concentration
gradient dc/0n ~ 6! increases and SC/GSC renews more rapidly due to the boundary motion.

6.5. Dissolution problem at higher Rayleigh number

In this section we discuss a simulation with the highest Rayleigh number we have achieved so far — Ra = 10°
with Re = 316,Pe = 3160, € = 5 x 10~ and Stefan number B/Pe = 0.005. Figure 10 shows simulation results
using N = 300, with Az = 0.004. For this Rayleigh number, the flow is no longer laminar [see Fig. 10(b) and
supplemental movie S8]. Detached density plumes with higher local concentration sink towards the bottom, showing
a close resemblance to the thermal plumes of Rayleigh-Bénard convection [13, 38] and the density plumes of the
Rayleigh-Taylor instability [11]. Naturally, this change of flow regimes transforms the shape dynamics.

Starting from a circular interface as shown in Fig. 10(a), one distinct feature of the dissolution at high Ra is the
formation of near-corners and a rough bottom surface. Once formed, this roughness persists throughout the dissolution
process as shown in Fig. 10(b)-(e). The maximum non-dimensional curvature max, |k(e, )| is plotted as a function
of time in Fig. 10(f). Initially, the interface stays very nearly circular with k =~ 2r. However, the curvature suddenly
increases at ¢ ~ 10 when the boundary layer starts to separate, and the surface roughens thereafter (see supplemental
movie S8). The curvature peaks at around ¢ = 30 in Fig. 10(f), and an inspection of the supplemental movie S8 shows
that the two bottom near-corners shown in Fig. 10(b) merge into a single downward spike in Fig. 10(c)-(e) during that
time. The curvature of this downward spike is highest along the interface, and its value decreases in time due to the
geometric dissipation from the Gibbs-Thomson effect.

What initiates this formation of fine-scale structure? Figure 11(a) shows several snapshots of the interface and
the concentration field around the time of the first boundary layer separation. The boundary layer has thickened by

~ §, and by ¢ = 10, the bottom boundary layer has detached, eventually forming two heavy plumes (by ¢ = 12)
that sink towards the bottom. During the same period of time, near-corners start to develop at the location of flow
separation; similar corner formation has been observed in the experiments on erosion [37] and dissolution [6]. One
sign of a destabilizing boundary layer is the weakening of surface shear stress 7 = Re™'0%y/dn” [31]. Figure 11(b)
shows such a weakening between the locations of flow separation, marked with dashed lines, between ¢ = 10 and
t = 12. Indeed, T decreases markedly in magnitude there and then. The dissolution rate increases significantly as the
flow separates (see Fig. 11(c)), due to recirculating flows in the wake that introduce relatively fresh liquid, creating
a higher local concentration gradient at the surface. Likewise, the curvature distribution in Fig. 11(d) deviates from
its initial profile of k = 27, as the bottom of the dissolving solid forms new near-corners. By ¢t = 12 there are now
two descending plumes on each side, one emanating from a newly formed near-corner, and the other from the initial
boundary layer detachment point. As the bottom surface of the solid recedes upwards, at later times these plumes
destabilize to transverse bending, and the flows become much more complex, as seen in Fig. 10.
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812 time, ¢
Fig. 10: High Rayleigh number of Ra = 10° leads to flow separation and pattern formations. (a)-(e) Snapshots of the
concentration field and solid geometry at various time. The bottom of dissolving solid shows more complex geometry
compared to its top, where dense plumes carrying high concentration fluid detach and sink to the bottom. Movie
can be found in supplemental material S8. (f) Maximum non-dimensional curvature max [k| = max, |06/da| of the
interface grows rapidly as the boundary layer separation occurs at ¢ = 10, which signals complex geometry forms and
the interface deviates from the circular profile. The bottom corners shown in (b) merge into a single spike at r = 30,
resulting in the maximum curvature over time.



22 Jinzi Mac Huang et al. / Journal of Computational Physics (2021)

@ e ™Y
-50 : : :

0 05 10 A 05 A 10 X o5 A I
a=s/L

Fig. 11: Evolution of the interface and dynamical quantities around the moment of boundary layer separation in
Fig. 10. The time period of t = 8-12 corresponds to the shaded area in Fig. 10(f). (a) Snapshots of the concentration
field around the flow separation at r = 10, the separation points are marked with arrows. High concentration plumes
form due to the advection of detaching flows. (b) The shear stress T = Re~!9%*/0n? at the moving interface decreases
rapidly near the flow separation (marked with dashed lines). (c) The magnitude of normal boundary velocity -V, =
—BPe~'0c/0n increases after flow separation. (d) The non-dimensional curvature x = —d,6 deviates from its initial
profile of k = 2mr as V,, drives the boundary away from a circle.
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(a) high Ra, 1 hour (b) moderate Ra, 1 month

Fig. 12: Two experiments of spherical solids of sugar dissolving in water. (a) When the sugar dissolves into fresh
water, complex surface textures form at the bottom of the dissolving object [7]; parameter values are Re ~ 10*, Pe ~
107 and Ra ~ 10'!. (b) Adding sugar to the background fluid results in a moderate Rayleigh number (Ra ~ 4 x 10°),
and surface textures with a larger length-scale are observed. In this experiment a prominent downward tip forms,
located at the bottom of the dissolving solid. The shape of the dissolving solid is qualitatively similar to the shape
observed in the numerical simulation shown in Fig. 10; the Rayleigh numbers are similar despite radically different
Reynolds and Péclet numbers.

Small numerical artifacts begin to appear in this simulation at ¢t ~ 12 (see Fig. 11(b)-(d)). In this simulation, the
high Pe and Re produce fine length-scales and fast velocities, especially when boundary-layer separation occurs. To
compute this solution in a reasonable timeframe, we are using a discretization that just resolves the spatial scales and
timesteps that near the Courant-Friedrichs-Lewy condition. Increased temporal and spatial resolution will be required
to attack problems with higher Re and Pe. We discuss some possibilities for how to achieve this in Section 7.

7. Discussion

In this paper we introduce and test an accurate, sharp-interface method for solving the Stefan problem coupled
to a Navier-Stokes flow (the dissolution problem). These problems are numerically challenging, as the boundary
motion depends on the normal derivative of field variables. The solver introduced here is based on the IBSE method,
which allows accurate resolution of these normal derivatives [24]. In refinement studies the method achieves third-
order accuracy for Stefan problems and second-order accuracy for the dissolution problem, measured in L* for all
variables. In addition, we explicitly verify that the method provides convergent estimates for the normal-derivative of
the concentration and the surface shear stress on the boundary. Having access to accurate estimates of these quantities
allows for an analysis of the way flow structures affect the dissolution process, as in our discussion in Section 6.5.
For the classical Stefan problem (without flow), we validate the solver against a known analytic solution and show
that it is able to reproduce the well-known Mullins-Sekerka instability. For the dissolution problem, when boundary
layer separation does not occur, the solver reproduces a predicted boundary layer scaling, and when boundary layer
separation does occur, it qualitatively reproduces interface morphologies observed in experiments [7].

Some experimental observations of dissolution are found in Fig. 12, which shows an initially spherical solid made
of sugar dissolving into a large body of liquid. Figure 12(a) shows the dissolution of sugar into fresh water. The
dissolved shapes have scalloped patterns on the bottom and a sharp edge separating the rough bottom from its smooth
top, where the flow has a laminar boundary layer structure. In Figure 7, we observed from our simulations that
a higher Rayleigh number is associated with finer structures in the flow/concentration fields and higher curvatures
in the surface morphology, so the formation of fine patterns in Fig. 12(a) is expected, although we were unable to
compute numerical solutions in this parameter regime, where Re ~ 10*, Pe ~ 107, and Ra ~ 10'!. Similar patterns
have been observed experimentally in dissolution [7, 8] and numerically in melting [5].

In the experiment shown in Fig. 12(b), sugar has been added to the initial fluid into which the solid dissolves,
increasing the viscosity and decreasing the Reynolds number of the associated flow. Since the normal velocity V,, «
B/Pe and we know the Péclet number for the experiment shown in Fig. 12(a) [7], we can compare the timescales of
dissolution between the two experiments shown in Fig. 12 to estimate the Péclet number associated with Fig. 12(b) to
be Pe ~ 10'°. To estimate the Rayleigh number for this experiment, we use the Stokes-Einstein relation [39] to obtain
vD = kgT/(6nRp) ~ 107'® m*/s?, where kg is the Boltzmann constant, T ~ 300 K is the temperature, and R ~ 1
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nm is the radius of a sugar molecule. Using the shadowgraph technique', we observe that the density plumes move
approximately 1 cm every minute so that the typical flow speed is U ~ 10~ m/s. With a typical length-scale of L ~ 6
cm which is the initial diameter of the sphere, the Rayleigh number in Fig. 12(b) is Ra = RePe = (U L)?/(vD) ~ 4x10°
— a number that is very close to the Rayleigh number from the simulation shown in Fig. 10. In Fig. 8, we observed
that simulations with the same Rayleigh number but different Reynolds and Péclet numbers had similar morphologies.
Remarkably, the dissolved shapes in Fig. 10 and Fig. 12(b) show a qualitative resemblance even though the parameters
in the experiment (Pe ~ 10'" and Re = Ra/Pe ~ 107*) are drastically different from those used for the simulation
(Pe = 3160 and Re = 316). The relationship between the interface morphology and the Rayleigh number suggests
that the interaction between the flow field, concentration field, and the geometry is critical in driving these complex
shape dynamics. The numerical method developed in this paper allows us to accurately compute important quantities
that are hard to measure experimentally, including the surface shear stress and concentration gradients near to the
boundary. This extra information is crucial in helping piece together a full understanding of the shape dynamics of
this system.

In the experiments shown in Fig. 12(a) the Rayleigh number is about 10!, with a Schmidt number of 10°; corre-
sponding to a Reynolds number Re ~ 10* and a Péclet number of Pe ~ 107. Unfortunately, these parameter values lead
to extremely thin boundary layers (in both u and ¢), requiring high resolution to accurately resolve. In fact, most small
solute molecules yield a Schmidt number around Sc = v/D = Pe/Re ~ 10° in water due to their similar molecular
diffusivity at D ~ 107 m?/s [40], which leads to unavoidably fine scales in studying dissolution problems at moderate
or high Re. Atlow Re, the Stokes-Einstein relation enforces Pe ~ Re™!, which adds stiffness to the advection-diffusion
equation and again leads to thin boundary layers. Numerically studying these problems in experimentally relevant
parameter regimes will require the use of an adaptive solver to capture these fine near-boundary flow structures. The
Immersed Boundary Method, on which the IBSE method is based, has been implemented in an adaptive framework
in IBAMR?, and extending the methods developed in this paper within that framework presents one possible method
for attacking such problems. Nevertheless, there are other interesting problems that are accessible to the solver as
developed, which can, on a standard workstation, handle Reynolds and Péclet number numbers of Re ~ 300 and
Pe ~ 3000, respectively. These are approximately the parameter values for ice melting into water [5]. This situation
also demands special care, as water has a density anomaly near 7' = 4°C; thus, the Boussinesq approximation used in
this paper must be modified to correctly represent the known buoyancy-temperature dependence.
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